Structures of Some Taxane Diterpenoids, Baccatins-III, -IV, -VI, and -VII and 1-Dehydroxybaccatin-IV, Possessing an Oxetan Ring

By DEANNA P. DELLA CASA DE MARCANO and THOMAS G. HALSALL*

(Universidad Central de Venezuela, Escuela de Química, Caracas, Venezuela, and The Dyson Perrins Laboratory, Oxford University, Oxford OX1 3QY)

Summary Baccatin-III (3), -IV (5), -VI (7), and -VII (8) and the 1-dehydroxy derivative of baccatin-IV are taxane derivatives with an oxetan ring.

RECENTLY taxol (1),¹ a natural product with potent antileukemic and tumour inhibiting properties, was shown to be a taxane derivative with an oxetan ring. This ring system in natural products is rare. One other taxane derivative containing it is baccatin-V (2).^{2,3} The structures of further oxetan-containing taxanes have now been determined. They are baccatin-IV⁴ (5), $C_{32}H_{44}$ - O_{14} , m.p. 254—255° (decomp.), $[\alpha]_D + 19°$, $\lambda_{max} 219$ nm, ϵ 5000; 1-dehydroxybaccatin-IV (6), $C_{32}H_{44}O_{13}$, m.p. 286° (decomp.), $[\alpha]_D + 5°$, $\lambda_{max} 218$ nm, ϵ 7000; baccatin-IV (7), $C_{37}H_{46}O_{14}$, m.p. 244—245° (decomp.), $[\alpha]_D - 5°$, $\lambda_{max} 225$, 274, and 282 nm, ϵ 17,600, 860, and 640; and baccatin-VII (8), $C_{38}H_{52}O_{14}$, m.p. 270° (decomp.), $[\alpha]_D + 9°$, $\lambda_{max} 218$ nm, ϵ 2500.

Compound	H on carbon carrying oxygens							CH_3 groups on				
	C-2	C-5	C-7	C-9	C-10	C-13	C-20	C-15β	C-12	C-15a	C-8	C-3-
(5)	$\frac{4\cdot 38d}{I_{\rm e}6}$	5.00d	4·48q 1 7:10	$\frac{4.05d}{I}$	3·78d 7 11	3 ∙80m	5·45d, 5·86d 1 8	8.79	8.00	8· 3 0	8.45	6·94
(6)	4 · 4 0	5.00d 1 10	4.42 I 5:9	4.08d 1 11	3.82d 111	4·10m	5·45d, 5·78d 1 8	8.88	8 ∙00	8.21	8.47	7·10
(7)	4·10d 7.6	5.02d 1 10	4·43bt	3·95d 7 10	3.78d 7 10	3 ∙80m	5·65,d 5·87d 1 8	8.78	7.88	$8 \cdot 22$	8 ·46	6·81
(8)	4·37d 16	5.02d I 10	4.50bt 78	4.06d 1 11	3·81d 711	3 ·85m	5.50d, 5.83d 18	8.80	8.00	8.29	8.45	6·95
(4) ^a	4·29 1 6	5.04q° 1 4.9	5.52	J	3.52s		5·65d, 5·85d I 8	8.80	7.72	8.75	8· 33	6.08 7.6
(4) ^b	4·29 / 6	5.04bd I10	đ		3 ∙54s		5.64d, 5.84d 16	8.80	7.72	8.74	8 ∙ 3 4	6.04 1.6
(3)	4 ∙ 3 8 J 7	5·01q J 10; 4	5·54q J 10·5;6	3	3∙7 0s	$5 \cdot 15 \mathrm{m}$	5·70d, 5·8 3 d J 8	8.91	7.75	8.91	8.35	6·14 J 7

N.m.r. data (τ units) (J values given in Hz)

TABLE

^a Prepared from baccatin-III (ref. 6). ^b Prepared from taxol (ref. 1). ^c This signal is a poorly resolved quartet. ^d Not reported.

Six acetate groups and at least one hydroxy-group, indicated by the effect of D₂O exchange on the n.m.r. spectrum, account for thirteen oxygen atoms of baccatin-IV (5). It was unaffected by acetylation, by treatment with Jones reagent or Me₂SO-Ac₂O, or by ozone. Any hydroxygroup is therefore tertiary or very hindered and there is no

exocyclic methylene group. A signal at τ 8.00 shows the C-12 vinylic methyl group of a tax-11-ene. The 9α , 10β diacetoxy system gives the typical AB system at τ 4.05 and 3.78. The fourteenth oxygen atom affords another AB system at τ 5.45 and 5.86 indicative of a -CH₂-O group of an oxetan. Two coupled doublets at τ 6.94 and 4.38 indicate a proton on C-3 coupled with a proton on C-2 carrying an acetoxy group and the absence of protons at C-1 and C-4. A signal at τ 4.48 (q, J 7 and 10 Hz) shows an axial proton on C-7 carrying a β -acetoxy group, the proton being coupled with the C-6 methylene group. A proton on C-13 with an α -acetoxy-group is coupled with the \overline{C} -14 methylene group, giving a signal at τ 3.80 (m). The hydroxy-group is placed on C-1 in the β -configuration because of its

deshielding effects on the C-8 and C-15 β methyl signals and its shielding effect on the C-15 α methyl signal.[†] The remaining acetoxy group must be at C-4 and α -orientated since the signal of 8-Me at τ 8.45 shows the typical downfield shift found with the β -orientated oxetan ring.

1-Dehydroxybaccatin-IV (6) has one less oxygen atom than baccatin-IV and has a very similar n.m.r. spectrum to it (see Table) except for the signal at $\tau 4.40$ which shows that the proton at C-2 is coupled to protons at both C-1 and C-3 and that there is no hydroxy-group at C-1.

Baccatin-VI (7) differs from baccatin-IV (5) in having a benzoate instead of an acetate group in the 2α -position. This is indicated by its n.m.r. spectrum (see Table) which is very similar to that of baccatin-IV except that the signal due to the C-2 proton has moved downfield.

The mass spectrum of baccatin-VII (8), C36H52O14, had a peak at m/e 575 (M - 115) corresponding to the loss of a molecule of water and of the capro-oxy-group ($C_5H_{11}CO\cdot O\cdot$). Its n.m.r. spectrum (see Table) is also very similar to that of baccatin-IV and indicates that the structures of baccatins-IV and -VII are identical except for the presence of one caproate group, which is placed at C-2, instead of an acetate group.

In 1970 structure (9) was proposed⁵ for baccatin-III. The original formula proposed for it was C31H38O114 but this was revised⁵ to $C_{33}H_{42}O_{13}$ (containing the elements of MeCO₂H more than the original formula). The existence of taxane derivatives with an oxetan ring has led to a reconsideration of its structure. It also is an oxetan which gives rise to the AB system at τ 5.70 and 5.83 (J 8 Hz) and has the first proposed $C_{31}H_{38}O_{11}$ formula. Its structure is (3), being confirmed by the identity of the physical constants of the $\alpha\beta$ -unsaturated ketone, m.p. 210–212° (decomp.), obtained on allylic oxidation of baccatin-III with those reported¹ for the $\alpha\beta$ -unsaturated ketone (4), m.p. 210–212°, obtained by oxidation of taxol (1) with activated manganese dioxide under mild basic conditions in acetone. Their respective n.m.r. signals are given in the Table. Baccatin-III (3) differs from baccatin-V (2) only in the configuration of the hydroxy-group at C-7, that in baccatin-V having the uncommon α configuration.

(Received, 19th February 1975; Com. 212.)

 \dagger This effect has also been found with other 1 β -hydroxy-taxanes and will be discussed in the full paper.

- ¹ W. C. Wani, H. L. Taylor, M. E. Wall, P. Coggan, and A. T. McPhail, J. Amer. Chem. Soc., 1971, 93, 2325. ² D. P. Della Casa de Marcano, T. G. Halsall, E. Castellano, and O. J. R. Hodder, Chem. Comm., 1970, 1382.

- ³ E. Castellano and O. J. R. Hodder, Acta Cryst., 1973, B29, 2566.
 ⁴ W. R. Chan, T. G. Halsall, G. M. Hornby, A. W. Oxford, K. Bjåmer, G. Ferguson, and J. M. Robinson, Chem. Comm., 1966, 923. ⁵ D. P. Della Casa de Marcano, T. G. Halsall, and G. M. Hornby, Chem. Comm., 1970, 216.